Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Curr Opin Infect Dis ; 36(3): 155-163, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2269882

ABSTRACT

PURPOSE OF REVIEW: Respiratory syncytial virus (RSV) continues to be a major cause of severe lower respiratory tract infection in infants, young children, and older adults. In this review, changes in the epidemiology of RSV during the coronavirus disease 2019 (COVID-19) pandemic are highlighted together with the role which increased molecular surveillance efforts will have in future in assessing the efficacy of vaccines and therapeutics. RECENT FINDINGS: The introduction of nonpharmaceutical intervention (NPIs) strategies during the COVID-19 pandemic between 2020 and 2022 resulted in worldwide disruption to the epidemiology of RSV infections, especially with respect to the timing and peak case rate of annual epidemics. Increased use of whole genome sequencing along with efforts to better standardize the nomenclature of RSV strains and discrimination of RSV genotypes will support increased monitoring of relevant antigenic sites in the viral glycoproteins. Several RSV vaccine candidates based on subunit, viral vectors, nucleic acid, or live attenuated virus strategies have shown efficacy in Phase 2 or 3 clinical trials with vaccines using RSVpreF protein currently the closest to approval and use in high-risk populations. Finally, the recent approval and future use of the extended half-life human monoclonal antibody Nirsevimab will also help to alleviate the morbidity and mortality burden caused by annual epidemics of RSV infections. SUMMARY: The ongoing expansion and wider coordination of RSV molecular surveillance efforts via whole genome sequencing will be crucial for future monitoring of the efficacy of a new generation of vaccines and therapeutics.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Infant , Child , Humans , Child, Preschool , Aged , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , Pandemics/prevention & control , COVID-19/epidemiology , Respiratory Syncytial Virus, Human/genetics
2.
Viruses ; 14(4)2022 03 25.
Article in English | MEDLINE | ID: covidwho-1798882

ABSTRACT

Metapneumoviruses, members of the family Pneumoviridae, have been identified in birds (avian metapneumoviruses; AMPV's) and humans (human metapneumoviruses; HMPV's). AMPV and HMPV are closely related viruses with a similar genomic organization and cause respiratory tract illnesses in birds and humans, respectively. AMPV can be classified into four subgroups, A-D, and is the etiological agent of turkey rhinotracheitis and swollen head syndrome in chickens. Epidemiological studies have indicated that AMPV also circulates in wild bird species which may act as reservoir hosts for novel subtypes. HMPV was first discovered in 2001, but retrospective studies have shown that HMPV has been circulating in humans for at least 50 years. AMPV subgroup C is more closely related to HMPV than to any other AMPV subgroup, suggesting that HMPV has evolved from AMPV-C following zoonotic transfer. In this review, we present a historical perspective on the discovery of metapneumoviruses and discuss the host tropism, pathogenicity, and molecular characteristics of the different AMPV and HMPV subgroups to provide increased focus on the necessity to better understand the evolutionary pathways through which HMPV emerged as a seasonal endemic human respiratory virus.


Subject(s)
Metapneumovirus , Paramyxoviridae Infections , Poultry Diseases , Animals , Chickens , Humans , Metapneumovirus/genetics , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/veterinary , Poultry Diseases/epidemiology , Retrospective Studies
3.
Sci Rep ; 10(1): 21447, 2020 12 08.
Article in English | MEDLINE | ID: covidwho-969123

ABSTRACT

Currently, infections with SARS-Coronavirus-2 (SARS-CoV-2), the causative agent of the COVID-19 pandemic, are responsible for substantial morbidity and mortality worldwide. Older adults subjects > 60 years of age account for > 95% of the over one million fatal cases reported to date. It is unclear why in this age group SARS-CoV-2 infection causes more severe disease than in young adults. We hypothesized that differences in SARS-CoV-2 cross-reactive cellular immunity induced after infection with human coronaviruses (HCoVs), like OC43 and NL63, were at the basis of the differential mortality (and morbidity) observed after SARS-CoV-2 infection, because a small proportion of HCoV-specific T cells cross-react with SARS-CoV-2. Our data demonstrate that pre-existing T cell immunity induced by circulating human alpha- and beta-HCoVs is present in young adult individuals, but virtually absent in older adult subjects. Consequently, the frequency of cross-reactive T cells directed to the novel pandemic SARS-CoV-2 was minimal in most older adults. To the best of our knowledge, this is the first time that the presence of cross-reactive T cells to SARS-CoV-2 is compared in young and older adults. Our findings provide at least a partial explanation for the more severe clinical outcome of SARS-CoV-2 infection observed in the elderly. Moreover, this information could help to design efficacious vaccines for this age group, aiming at the induction of cell-mediated immunity.


Subject(s)
Antibodies, Viral/immunology , Coronavirus NL63, Human/immunology , Coronavirus OC43, Human/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Aged , COVID-19/immunology , COVID-19/pathology , Cross Reactions/immunology , Humans , Immunity, Cellular/immunology , Middle Aged , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL